Pendekatan Teori Graf untuk Analisis Jaringan Interaksi Protein-Protein

Main Article Content

Yustina Sri Suharini
Muhamad Ramli
Sulistyowati
Endang R.D.

Abstract

Jaringan interaksi protein-protein merupakan hal penting pada setiap proses yang terjadi dalam sel biologis karena dapat digunakan untuk mempelajari kondisi fisiologis sel ketika berada dalam keadaan normal atau tidak normal. Di sisi lain, infrastruktur komputasi telah berada di era yang cukup memadai untuk menyimpan data hasil eksperimen dari berbagai tempat dan waktu. Namun data yang terkumpul perlu diolah dan dianalisis dengan cara yang tepat agar menghasilkan pengetahuan atau wawasan baru yang bermanfaat. Penelitian ini bertujuan melakukan pendekatan agar data jaringan interaksi protein-protein yang terkumpul di database menjadi informasi yang bermakna. Pendekatan dilakukan menggunakan teori graf dengan studi kasus data protein virus SARS-Cov-2. Metode yang digunakan adalah metode in-silico dengan data sekunder berasal dari database bereputasi yang dapat diakses publik. Hasil penelitian berupa daftar protein-protein paling berpengaruh pada virus SARS-Cov-2 berdasarkan parameter-parameter umum yang digunakan dalam ilmu jaringan.

Article Details

Section
Articles

References

I. Lee dan H. Nam, “Identification of drug-target interaction by a random walk with restart method on an interactome network,” BMC Bioinformatics, vol. 19, 2018, doi: 10.1186/s12859-018-2199-x.

H. Feng dkk., “Machine Learning Analysis of Cocaine Addiction Informed by DAT, SERT, and NET-Based Interactome Networks.,” J Chem Theory Comput, vol. 18, no. 4, hlm. 2703–2719, Apr 2022, doi: 10.1021/acs.jctc.2c00002.

M. F. M. Bjorbækmo, A. Evenstad, L. L. Røsæg, A. K. Krabberød, dan R. Logares, “The planktonic protist interactome: where do we stand after a century of research?,” ISME Journal, vol. 14, no. 2, hlm. 544–559, 2020, doi: 10.1038/s41396-019-0542-5.

N. Zaki, S. Lazarova-Molnar, W. El-Hajj, dan P. Campbell, “Protein-protein interaction based on pairwise similarity.,” BMC Bioinformatics, vol. 10, no. 1, hlm. 150, Mei 2009, doi: 10.1186/1471-2105-10-150.

W. Wardah dkk., “Predicting protein-peptide binding sites with a deep convolutional neural network,” J Theor Biol, vol. 496, 2020, doi: 10.1016/j.jtbi.2020.110278.

M. A. Rezaei, Y. Li, D. Wu, X. Li, dan C. Li, “Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction,” IEEE/ACM Trans Comput Biol Bioinform, hlm. 1–1, 2021, doi: 10.1109/TCBB.2020.3046945.

F. Wahab Khattak, Y. Salamah Alhwaiti, A. Ali, M. Faisal, dan M. H. Siddiqi, “Protein-Protein Interaction Analysis through Network Topology (Oral Cancer),” J Healthc Eng, vol. 2021, hlm. 1–9, Jan 2021, doi: 10.1155/2021/6623904.

H. Y. Yuen dan J. Jansson, “Better Link Prediction for Protein-Protein Interaction Networks,” dalam 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), IEEE, Okt 2020, hlm. 53–60. doi: 10.1109/BIBE50027.2020.00017.

Y. Wang, S. Wu, Y. Duan, dan Y. Huang, “A Point Cloud-Based Deep Learning Strategy for Protein-Ligand Binding Affinity Prediction,” Brief Bioinform, vol. 23, no. 1, Jul 2021, doi: 10.1093/bib/bbab474.

G. Diez, D. Nagel, dan G. Stock, “Correlation-Based Feature Selection to Identify Functional Dynamics in Proteins.,” J Chem Theory Comput, vol. 18, no. 8, hlm. 5079–5088, Agu 2022, doi: 10.1021/acs.jctc.2c00337.

S. Wang dkk., “SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction,” Front Genet, vol. 11, hlm. 607824, Feb 2021, doi: 10.3389/fgene.2020.607824.

A. Dhakal, C. McKay, J. J. Tanner, dan J. Cheng, “Artificial intelligence in the prediction of protein–ligand interactions: recent advances and future directions,” Brief Bioinform, vol. 23, no. 1, Jan 2022, doi: 10.1093/bib/bbab476.

R. Nandakumar dan V. Dinu, “Developing a machine learning model to identify protein–protein interaction hotspots to facilitate drug discovery,” PeerJ, vol. 8, 2020, doi: 10.7717/peerj.10381.

F. Prado-Prado dkk., “Using entropy of drug and protein graphs to predict FDA drug-target network: theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica.,” Eur J Med Chem, vol. 46, no. 4, hlm. 1074–94, Apr 2011, doi: 10.1016/j.ejmech.2011.01.023.

A. Ben Rejab dan I. Boukhris, “FAST Community Detection for Proteins Graph-Based Functional Classification,” dalam Advances in Intelligent Systems and Computing, 2020, hlm. 587–596. doi: 10.1007/978-3-030-16660-1_57.

A. Manuscript, I. Networks, dan H. Disease, “WoodenBoat-logo.ai,” vol. 144, no. 6, hlm. 986–998, 2012, doi: 10.1016/j.cell.2011.02.016.Interactome.

J. Menche dkk., “Uncovering disease-disease relationships through the incomplete interactome,” Science (1979), vol. 347, no. 6224, hlm. 841, 2015, doi: 10.1126/science.1257601.

H. C. Rustamaji dkk., “A network analysis to identify lung cancer comorbid diseases,” Appl Netw Sci, vol. 7, no. 1, 2022, doi: 10.1007/s41109-022-00466-y.

S. Abubaker Bagabir, N. K. Ibrahim, H. Abubaker Bagabir, dan R. Hashem Ateeq, “Covid-19 and Artificial Intelligence: Genome sequencing, drug development and vaccine discovery.,” J Infect Public Health, vol. 15, no. 2, hlm. 289–296, Feb 2022, doi: 10.1016/j.jiph.2022.01.011.

T. Singh, R. Khan, dan S. Srivastava, “A Review on AI-Based Techniques for Tackling COVID-19,” dalam Studies in Computational Intelligence, 2022, hlm. 325–336. doi: 10.1007/978-981-16-8012-0_25.

A. Khamis dkk., “AI and Robotics in the Fight Against COVID-19 Pandemic,” dalam Studies in Systems, Decision and Control, 2022, hlm. 57–85. doi: 10.1007/978-3-030-72834-2_3.

G. Floresta, C. Zagni, D. Gentile, V. Patamia, dan A. Rescifina, “Artificial Intelligence Technologies for COVID-19 De Novo Drug Design.,” Int J Mol Sci, vol. 23, no. 6, hlm. 3261, Mar 2022, doi: 10.3390/ijms23063261.

R. Gupta, A. Gupta, M. Bedi, dan S. K. Pal, “Application of Deep Learning Techniques for COVID-19 Management,” dalam Studies in Computational Intelligence, 2022, hlm. 165–197. doi: 10.1007/978-3-030-74761-9_8.

S. Monteleone, T. F. Kellici, M. Southey, M. J. Bodkin, dan A. Heifetz, “Fighting COVID-19 with Artificial Intelligence.,” Methods Mol Biol, vol. 2390, hlm. 103–112, 2022, doi: 10.1007/978-1-0716-1787-8_3.

C. von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, dan B. Snel, “STRING: a database of predicted functional associations between proteins.,” Nucleic Acids Res, vol. 31, no. 1, hlm. 258–61, Jan 2003, doi: 10.1093/nar/gkg034.

D. Szklarczyk dkk., “The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored,” Nucleic Acids Res, vol. 39, no. Database, hlm. D561–D568, Jan 2011, doi: 10.1093/nar/gkq973.

1 Paul Shannon dkk., “Cytoscape: A Software Environment for Integrated Models,” Genome Res, vol. 13, no. 22, hlm. 426, 1971, doi: 10.1101/gr.1239303.metabolite.